题目内容
如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.
在菱形ABCD中,对角线AC、BD分别为6cm、10cm,则菱形ABCD的面积为 .
解下列方程:
(1)3x﹣3=4x+5
(2).
已知:如图1,等边△OAB的边长为3,另一等腰△OCA与△OAB有公共边OA,且OC=AC,∠C=120°.现有两动点P、Q分别从B、O两点同时出发,点P以每秒3个单位的速度沿BO向点O运动,点Q以每秒1个单位的速度沿OC向点C运动,当其中一个点到达终点时,另一个点也随即停止运动.请回答下列问题:
(1)在运动过程中,△OPQ的面积记为S,请用含有时间t的式子表示S.
(2)在等边△OAB的边上(点A除外),是否存在点D,使得△OCD为等腰三角形?如果存在,这样的点D共有 个.
(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着点C旋转,使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为 .
如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
下列长度的各组线段,能组成直角三角形的是( )
A.12,15,18 B.12,35,36 C.0.3,0.4,0.5 D.2,3,4
有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,﹣2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,﹣11,﹣2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是( )
A.2015 B.1036 C.518 D.259
如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2= .