题目内容

正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.

(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;

(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立���写出证明过程;若不成立,请说明理由;

(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.

解答:

解:(1)AP=EF,AP⊥EF,理由如下:

连接AC,则AC必过点O,延长FO交AB于M;

∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,

∴四边形OECF是正方形,

∴OM=OF=OE=AM,

∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,

∴△AMO≌△FOE,

∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,

故AP=EF,且AP⊥EF.

(2)题(1)的结论仍然成立,理由如下:

延长AP交BC于N,延长FP交AB于M;

∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,

∴四边形MBEP是正方形,

∴MP=PE,∠AMP=∠FPE=90°;

又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,

∴AM=PF,

∴△AMP≌△FPE,

∴AP=EF,∠APM=∠FPN=∠PEF

∵∠PEF+∠PFE=90°,∠FPN=∠PEF,

∴∠FPN+∠PFE=90°,即AP⊥EF,

故AP=EF,且AP⊥EF.

(3)题(1)(2)的结论仍然成立;

如右图,延长AB交PF于H,证法与(2)完全相同.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网