题目内容
函数y=的图象与直线y=x没有交点,那么k的取值范围是( )
A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
计算:
(1)
(2).
如果a<b,那么下列不等式成立的是( )
A.-3a>-3b B.a-3>b-3 C. D.a-b >0
若关于x的分式方程产生增根,则m的值为 .
如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是( )
A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<4
如图①,∠MON=90°,反比例函数(x>0)和(k<0,x<0)的图象分别是l1和l2.射线OM交l1于点A(1,a),射线ON交l2于点B,连接AB交y轴于点P,AB∥x轴.
(1)求k的值;
(2)如图②,将∠MON绕点O旋转,射线OM始终在第一象限,交l1于点C,射线ON交l2于点D,连接CD交y轴于点Q,在旋转的过程中,∠OCD的大小是否发生变化?若不变化,求出tan∠OCD的值;若变化,请说明理由;
(3)在(2)的旋转过程中,当点Q为CD中点时,CD所在的直线与l1的有几个公共点,求出公共点的坐标.
如图,在平面直角坐标系xOy中,边长为2的正方形OABC 的顶点A、C分别在x轴的正半轴和y轴的负半轴上,二次函数y=+bx+c的图象经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时,x的取值范围.
某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是( )
A.100(1+x)2=81 B.100(1﹣x)2=81
C.100(1﹣x%)2=81 D.100x2=81
(3分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是 .