题目内容
已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.
考点: 待定系数法求一次函数解析式。
专题: 探究型。
分析: 先根据一次函数y=kx+b(k≠0)图象过点(0,2)可知b=0,再用k表示出函数图象与x轴的交点,利用三角形的面积公式求解即可.
解答: 解:∵一次函数y=kx+b(k≠0)图象过点(0,2),
∴b=0,
令y=0,则x=﹣,
∵函数图象与两坐标轴围成的三角形面积为2,
∴×2×|﹣|=2,即||=2,
当k>0时, =2,解得k=1;
当k<0时,﹣ =2,解得k=﹣1.
故此函数的解析式为:y=x+2或y=﹣x+2.
练习册系列答案
相关题目