题目内容
已知x=
,求代数式
-
×
的值.
| 17 | ||
3
|
| 1 |
| x+1 |
| x+3 |
| x2-1 |
| x2-2x+1 |
| x2+4x+3 |
分析:先把各分式的分子和分母因式分解得到原式=
-
•
,约分后得
-
,再通分后得到原式=
,接下来是先把x进行分母有理化,即x=
=
=3
-1,然后把x=3
-1代入计算即可.
| 1 |
| x+1 |
| x+3 |
| (x+1)(x-1) |
| (x-1)2 |
| (x+1)(x+3) |
| 1 |
| x+1 |
| x-1 |
| (x+1) 2 |
| 2 |
| (x+1)2 |
| 17 | ||
3
|
17(3
| ||||
(3
|
| 2 |
| 2 |
解答:解:原式=
-
•
=
-
=
=
,
∵x=
=
=3
-1,
∴原式=
=
=
.
| 1 |
| x+1 |
| x+3 |
| (x+1)(x-1) |
| (x-1)2 |
| (x+1)(x+3) |
=
| 1 |
| x+1 |
| x-1 |
| (x+1) 2 |
=
| x+1-(x-1) |
| (x+1)2 |
=
| 2 |
| (x+1)2 |
∵x=
| 17 | ||
3
|
17(3
| ||||
(3
|
| 2 |
∴原式=
| 2 | ||
(3
|
| 2 |
| 18 |
| 1 |
| 9 |
点评:本题考查了分式的化简求值:先把各分式的分子或分母因式分解,再进行分式的乘除运算,然后进行分式的加减运算得到最简分式或整式,再把满足条件的字母的值代入计算得到对应的分式的值;有括号先算括号.也考查了二次根式的化简.
练习册系列答案
相关题目