题目内容
若一个三角形的三个内角之比是1:2:3,且最小边的长度是2
cm,求最长边的高的长度.
| 3 |
∵三角形的三个内角之比是1:2:3,
∴三个内角的度数分别为:30°,60°,90°,
∵最小边的长度是2
cm,
∴斜边的长度是4
cm,
∴另一条直角边的长度是6cm,
设最长边的高的长度为xcm,
∴4
x=2
×6,
解得,x=3;
答:最长边的高的长度是3cm.
∴三个内角的度数分别为:30°,60°,90°,
∵最小边的长度是2
| 3 |
∴斜边的长度是4
| 3 |
∴另一条直角边的长度是6cm,
设最长边的高的长度为xcm,
∴4
| 3 |
| 3 |
解得,x=3;
答:最长边的高的长度是3cm.
练习册系列答案
相关题目