题目内容

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F。
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?
解:(1)四边形B2FD1E是矩形。
因为△AB1D1平移到图(3)的,所以四边形B2FD1E是一个平行四边形,又因为在平行四边形ABCD中,AB=10,AD=6,BD=8,则有∠ADB是直角。所以四边形B2FD1E是矩形。
(2)因为三角形B1B2F与三角形AB1D1相似,则有B2F==0.6x,B1F==0.8x,
所以=B2F×D1F=0.6x×(8-0.8x)=4.8x-0.48x2,即y=4.8x-0.48x2=12-0.48(x-5)2
当x=5时,y=12是最大的值。
(3)要使△B1B2F与△B1CF相似,则有,解之得:x=3.6。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网