题目内容
(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACB
B.∠ADB=∠ABC
C.AB2=AD•AC
D.=
(2015秋•合肥期末)已知二次函数y=kx2﹣7x﹣7的图象与x轴没有交点,则k的取值范围为( )
A.k>﹣ B.k≥﹣且k≠0 C.k<﹣ D.k>﹣且k≠0
(2015秋•滦县期末)如图,函数y=和y=的图象分别是l1和l2,设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为( )
A.8 B.9 C.10 D.11
(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)
(2015•本溪)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为( )
A.4 B.﹣2 C. D.﹣
(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是( )
A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1
(2015秋•保定期末)某商品专营店购进一批进价为16元/件的商品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若每件按20元的价格销售时,每月能卖360件;若每件每涨1元,每天少卖10件;设销售价格为x(元/件)时,每天销售y(件),日总利润为W元.物价局规定:此类商品的售价不得低于进价,又不得高于进价的3倍销售,即16≤x≤48.
(利润=售价﹣进价,或总利润=单间利润×总销售件数)
(1)售价25元/件时,日销量 件,日总利润为 元;
(2)求y与x之间的关系式;
(3)求W与x之间的关系式,问销售价格为多少时,才能使每日获得最大利润?日最大利润是多少?
(4)商店为减少库存,在保证日利润3000元的前题条件下,商店该以多少元/件销售.
(2015秋•保定期末)已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是( )
A.m<0 B.m>0 C.m< D.m>
(2011•安顺)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)