题目内容

在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为( )

A.
B.
C.
D.
【答案】分析:根据相似三角形的判定原理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的面积公式计算三个正方形的面积,从中找出规律,问题也就迎刃而解了.
解答:
解:设正方形的面积分别为S1,S2…S2010
根据题意,得:AD∥BC∥C1A2∥C2B2
∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).
∵∠ABA1=∠A1B1A2=90°,
∴△BAA1∽△B1A1A2
在直角△ADO中,根据勾股定理,得:AD=
cot∠DAO==
∵tan∠BAA1==cot∠DAO,
∴BA1=AB=
∴CA1=+=×
同理,得:C1A2=××
由正方形的面积公式,得:S1=
S2=×,S3=××
由此,可得Sn=×(1+2n-2
∴S2010=5×(2×2010-2
=5×(4018
故选D
点评:本题综合考查了相似三角形的判定、勾股定理、正方形的性质等知识点,另外,在解题过程中,要认真挖掘题中隐藏的规律,这样可以降低解题的难度,提高解题效率.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网