题目内容
下列实数中,无理数是( )
A. 2 B. C. 3.14 D.
如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.
(1)求证:AD=EC;
(2)求证:四边形ADCE是菱形;
(3)若AB=AO,求的值.
方程的根是( )
A. x=2 B. x=0 C. x1=0,x2=-2 D. x1=0,x2=2
已知点G是△ABC的重心,AG=8,那么点G与边BC中点之间的距离是________.
如图CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD的值是( )
A. B. C. D.
如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为______.
某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.
(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?
(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是( )