题目内容
绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为0.000688毫米,则每个光量子的波长可用科学记数法表表示示为________________米;
如图,已知正方形 ABCD 的边长为 2,以点 A 为圆心,1 为半径作圆,点 E 是⊙A 上的任意 一点,点 E 绕点 D 按逆时针方向转转 90°,得到点 F,接 AF,则 AF 的最大值是______________
△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为( )
A. 1:2 B. 1:3 C. 1:4 D. 1:16
下列给出的条件中,能判定四边形ABCD为平行四边形的是( )
A.AB=CD,CD=DA; B.AB∥CD,AD=BC;
C.AB∥CD,∠A=∠C; D.∠A=∠B,∠C=∠D.
计算:
已知△ABC的内角分别是∠A、∠B、∠C,若∠1=∠A+∠B,∠2=∠B+∠C,∠3=∠C+∠A,则∠1,∠2,∠3中( )
A. 至少有一个锐角 B. 至少有两个钝角 C. 可以有两个直角 D. 三个都是钝角
在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.
(1)求上述抛物线的表达式;
(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;
(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.
如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是( )
A. 18﹣9π B. 18﹣3π C. 9﹣ D. 18﹣3π
中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:
(1)统计表中的a=________,b=___________,c=____________;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.