题目内容
x2﹣2x﹣15=0.(公式法)
在数轴上距离原点2个单位长度的点所表示的数是( )
A. 2 B. ﹣2 C. 2或﹣2 D. 1或﹣1
如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=________,PD=________.
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于( )
A. 130° B. 140° C. 150° D. 160°
已知△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O与BC相切于D,与AC相交于F,连接AD.
(1)求证:AD平分∠BAC;
(2)连接OC,如果∠B=30°,CF=1,求OC的长.
已知方程x2+mx+3=0的一个根是1,则它的另一个根是______.
下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是( )
A. 某种幼苗在一定条件下的移植成活率
B. 某种柑橘在某运输过程中的损坏率
C. 某运动员在某种条件下“射出9环以上”的概率
D. 投掷一枚均匀的骰子,朝上一面为偶数的概率
计算:=________.
一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是 .