题目内容

精英家教网如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6
2
,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=
 
分析:根据切割线定理得到PA2=PB•PC,设BC=x,则PB=x,PC=2x,因而得到2x2=72,解得x=6;OM⊥BC,则满足垂径定理,在直角△OMC中,根据勾股定理可得到OM=4.
解答:解:∵PA为⊙O的切线,PBC为⊙O的割线,
∴PA2=PB•PC;
设BC=x,则PB=x,PC=2x,
∴2x2=72,
解得x=6;
∵OM⊥BC,
在直角△OMC中,
∵OC=5,CM=3,
∴OM=4.
点评:本题解决的关键是正确理解记忆切割线定理,以及垂径定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网