题目内容

17、已知:如图,在梯形ABCD中,AB∥CD,E、F为AB上两点,且AE=BF,DE=CF,EF≠CD.
求证:AD=BC.
分析:首先根据等腰梯形CDEF得到∠DEF=∠CFE,再根据等角的补角相等得到∠AED=∠BFC.然后根据SAS证明△AED≌△BFC,从而证明结论.
解答:证明:∵DC∥EF,EF≠CD,
∴四边形CDEF是梯形,
∵DE=CF,
∴梯形CDEF是等腰梯形,
∴∠DEF=∠CFE,
∴∠DEA=∠CFB,
又∵AE=BF,DE=CF,
∴△AED≌△BFC,
∴AD=BC.
点评:掌握等腰梯形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网