题目内容
如图,某建筑物两边是平行的,则∠1 + ∠2 + ∠3 =( )
A.180° B.270° C.360° D.540°
如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
如图所示,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( ).
如图是大众汽车的标志图案,其中蕴涵着许多几何知识.根据下面的条件完成证明.已知:如图,BC∥AD,BE∥AF.
(1)求证:∠A=∠B;
(2)若∠DOB=135°,求∠A的度数.
若,则 .
已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是( )
A.40° B.50° C.130° D.140°
(本题满分5分)某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)
25 26 21 17 28 26 20 25 26 30 20 21 20 26 30 25 21 19 28 26
(1)上述数据中,众数是__________万元,中位数是__________万元,平均数是__________万元;
(2)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.
若方程是关于x的一元二次方程,则必有( )
A. B.一根为1 C.一根为-1 D.以上都不对
(1)解不等式组
(2)解方程:x2+3x-2=0;