搜索
题目内容
半径为6cm的圆,120°的圆心角所对的弧长是
cm .(结果保留π)
试题答案
相关练习册答案
试题分析:
.
点评:本题主要考查了弧长公式
.
练习册系列答案
中考复习指南针江苏系列答案
魔力导学开心练系列答案
中考真题汇编系列答案
命题研究系列答案
名校学案黄冈全程特训卷系列答案
名校期末复习宝典系列答案
名校密卷活页卷系列答案
名校绿卡小学毕业总复习系列答案
名校零距离系列答案
名校练考卷期末冲刺卷系列答案
相关题目
已知OA、OB是⊙O的两条半径,且OA⊥BC,C为OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD,交OC过于点E。
(1)求证:CD=CE;
(2)若将图1中的半径OB所在的直线向上平行移动,交⊙O于
,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
扇形的弧长为20πcm,面积为240πcm
2
,则扇形的半径为
cm。
如图,点A在半径为3的⊙O内,OA=
,P为⊙O上一点,当∠OPA取最大值时,PA的长等于( )
A.
B.
C.
B.
如图所示,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
AC;④DE是⊙O的切线,
正确的有( )
A.1个
B.2个
C.3个
D.4个
如图,⊙O的半径为2,点A的坐标为(2,
),直线AB为⊙O的切线,B为切点。则B点的坐标为
A.(
)
B.(
)
C.(
)
D.(
)
1471年,德国数学家米勒提出了雕塑问题:假定有一个雕塑高AB=3米,立在一个底座上,底座的高BC=2.2米,一个人注视着这个雕塑并朝它走去,这个人的水平视线离地1.7米,问此人应站在离雕塑底座多远处,才能使看雕塑的效果最好,所谓看雕塑的效果最好是指看雕塑的视角最大,问题转化为在水平视线EF上求使视角最大的点,如图:过A、B两点,作一圆与EF相切于点M,你能说明点M为所求的点吗?并求出此时这个人离雕塑底座的距离?
如图,以O为圆心,半径为2的圆与反比例函数y=(x>0)的图象交于A、B两点,则的长度为 ( )
A.π B.
π C.
π D.
π
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案