题目内容

如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为______,点E的坐标为______.
(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.
(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.
②运动停止时,求抛物线的顶点坐标.

【答案】分析:(1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标;
(2)利用待定系数法求出抛物线的解析式;
(3)本问非常复杂,须小心思考与计算:
①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考;
②当运动停止时,点E到达y轴,点E(-3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标.
解答:解:(1)由题意可知:OB=2,OC=1.
如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G.
易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(-1,3);
同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(-3,2).
∴D(-1,3)、E(-3,2).

(2)抛物线经过(0,2)、(-1,3)、(-3,2),
?
解得  


(3)①当点D运动到y轴上时,t=
当0<t≤时,如图(3)a所示.
设D′C′交y轴于点F
∵tan∠BCO==2,又∵∠BCO=∠FCC′
∴tan∠FCC′=2,即=2
∵CC′=t,∴FC′=2t.?
∴S△CC′F?=CC′•FC′=t=5t2
当点B运动到点C时,t=1.
<t≤1时,如图(3)b所示.
设D′E′交y轴于点G,过G作GH⊥B′C′于H.
在Rt△BOC中,BC=
∴GH=,∴CH=GH=
∵CC′=t,∴HC′=t-,∴GD′=t-
∴S梯形CC′D′G?=t-+t) =5t-
当点E运动到y轴上时,t=
当1<t≤时,如图(3)c所示
设D′E′、E′B′分别交y轴于点M、N
∵CC′=t,B′C′=
∴CB′=t-,?∴B′N=2CB′=t-
∵B′E′=,∴E′N=B′E′-B′N=-t
∴E′M=E′N=-t)
∴S△MNE′?=-t)•-t)=5t2-15t+
∴S五边形B′C′D′MN?=S正方形B′C′D′E′?-S△MNE′?=(5t2-15t+)=-5t2+15t-
综上所述,S与x的函数关系式为:
当0<t≤时,S=5t2
<t≤1时,S=5t
当1<t≤时,S=-5t2+15t
②当点E运动到点E′时,运动停止.如图(3)d所示
∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′
∴△BOC∽△E′B′C

∵OB=2,B′E′=BC=

∴CE′=
∴OE′=OC+CE′=1+=
∴E′(0,
由点E(-3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.
=?
∴原抛物线顶点坐标为(
∴运动停止时,抛物线的顶点坐标为().
点评:本题是非常典型的动线型综合题,全面考查了初中数学代数几何的多个重要知识点,包括:二次函数的图象与性质、待定系数法求解析式、抛物线与几何变换(平移)、相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质等.难点在于第(3)问,识别正方形和抛物线平移过程的不同阶段是关键所在.作为中考压轴题,本题涉及考点众多,计算复杂,因而难度很大,对考生综合能力要求很高,具有很好的区分度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网