题目内容
【题目】.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y. 则能够正确反映
与
之间的函数关系的图象是
![]()
A.
B.
C.
D. ![]()
【答案】A
【解析】
过点P作PF⊥BC于F,若要求△PBE的面积,则需要求出BE,PF的值,利用已知条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y与x的关系式,此时还要考虑到自变量x的取值范围和y的取值范围.
![]()
解:过点P作PF⊥BC于F,
∵PE=PB,
∴BF=EF,
∵正方形ABCD的边长是1,
∴AC=
=
,
∵AP=x,∴PC=
-x,
∴PF=FC=
(
-x)=1-
x,
∴BF=FE=1-FC=
x,
∴S△PBE=
BE?PF=
x(1-
x)=-
x2+
x,
即y=-
x2+
x(0<x<
),
∴y是x的二次函数(0<x<
),
故选A.
本题考查了动点问题的函数图象,和正方形的性质;等于直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
【题目】小东根据学习函数的经验,对函数
的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数
的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … |
|
|
| 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值为________________;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数
的大致图象;
![]()
(4)结合函数图象,请写出函数
的一条性质:______________________.
(5)解决问题:如果函数
与直线y=a的交点有2个,那么a的取值范围是______________ .