题目内容
(2009•唐山二模)已知:如图,四边形ABCD是等腰梯形,其中AD∥BC,AD=2,BC=4,AB=DC=2,点M从点B开始,以每秒1个单位的速度向点C运动;点N从点D开始,沿D-A-B方向,以每秒1个单位的速度向点B运动.若点M、N同时开始运动,其中一点到达终点,另一点也停止运动,运动时间为t(t>0).过点N作NP⊥BC与P,交BD于点Q.(1)点D到BC的距离为______;
(2)求出t为何值时,QM∥AB;
(3)设△BMQ的面积为S,求S与t的函数关系式;
(4)求出t为何值时,△BMQ为直角三角形.
【答案】分析:(1)分别过点A,D作BC边上的高,交BC边于E,F,由于四边形ABCD是等腰梯形,可得出BE=CF=(BC-AD)÷2=1,又由AB=DC=2,根据勾股定理可得点D到BC的距离DF=
=
(2)根据(1)得出的DF的值,可求出BD的长为2
,那么三角形BDC是个直角三角形,且∠C=60°,∠DBC=30°,如果QM∥AB,可得出∠PMQ度数也是60°,可先表示出MP的长,然后根据∠PQM的度数表示出PQ,然后根据QP∥DF,得出关于QP,DF,BP,BF的比例关系式,DF的值是定值,可表示出BP,BF,这样就可求出t的值.
(3)要分两种情况进行讨论
①当N在AD上时,关键是求出PQ,可在直角三角形BPQ中,先表示出BP,然后根据∠QBP的度数即可求出PQ的长,然后根据三角形的面积公式即可得出S,t的函数关系式.
②N在AB上时,还是要先求出PQ的值,可先表示出BN,然后在直角三角形BNP中,表示出BP,进而在直角三角形BPQ中,用BP表示出PQ,即可根据三角形的面积公式得出S,t的函数关系式.
(4)也要分两种情况进行讨论.
第一种情况,当N在AD上时,①当∠BMQ=90°时,那么M,P重合,于是就有BM+ND+FC=BC,即2t+1=4,即可得出t的值.
②当∠BQM=90°时,可先在直角三角形NDQ中,用ND的长,表示出NQ,然后根据求出的D到BC的距离,即可表示出PQ,这时PQ的第一种表示方法.第二种表示方法是,在直角三角形BMQ中,用BM表示出QM,然后在直角三角形QPM中,表示出PQ,然后可让这两个表示PQ的式子相等,即可得出此时的t的值.
第二种情况,当N在AB上时,此时只有∠BQM=90°,方法同②,也是通过不同的表示PQ的方法来得出t的值,方法同(3)②.
解答:解:(1)
(2)过A作AE⊥BC于E,过D作DF⊥BC于F,则四边形AEFD是矩形.
BE=CF=
=1.
直角三角形CFD中,CF=1,CD=2,cos∠C=
∴∠C=60°,DF=
.
∴∠ABE=∠C=60°
∵QM∥AB
∴∠QMP=60°
∵BM=t,PF=ND=t,FC=1,BC=4
∴PM=3-2t,BP=3-t.
直角三角形QPM中,∠QMP=60°,PM=3-2t,QP=
(3-2t).
∵QP⊥BC,DF⊥BC
∴QP∥DF,
∴△BQP∽△BDF,
∴
=
,即
=
∴5t=6,即t=1.2(s)
当t=1.2s时,QM∥AB
(3)当0<t≤2时,三角形BDF中,BF=3,DF=
,
∴BD=2
三角形BCD中,CD=2,BD=2
,BC=4,
因此BD2+CD2=BC2,
即三角形BDC是直角三角形,且∠BDC=90°,∠DBC=30°.
直角三角形BQP中,BP=3-t,∠DBC=30°,
∴PQ=
(3-t)
因此:S=
×t×
(3-t)=-
t2+
t
当2<t<4时,直角三角形NBP中,∠ABC=60°,BN=4-t,
∴BP=
.
在直角三角形BPQ中,∠DBC=30°,BP=
,
∴QP=
因此:S=
×t×
=-
t2+
t

(4)当0<t≤2时,即N在AD上时,分两种情况进行讨论:
①当∠BMQ=90°,即M与P点重合,那么BM+PF+CF=BM+ND+CF=2t+1=4
解得:t=1.5s.
②当∠BQM=90°,在直角三角形NQD中,ND=t,∠ADB=∠DBC=30°,
∴NQ=
t.
∵NP=
∴QP=
-
t
在直角三角形BQM中,∠DBC=30°,BM=t
∴QM=
t
在直角三角形QPM中,∠QMP=60°,QM=
t
∴QP=
t
∴
-
t=
t.
解得t=
s.
当2<t<4时,∠BQM=90°
直角三角形BNP中,BN=4-t,∠ABC=60°,
∴BP=
,
∴PM=BM-BP=t-
=
在直角三角形BPQ中,∠DBC=30°,BP=
∴PQ=
直角三角形QPM中,∠QMP=60°,PM=
∴PQ=
因此
=
,
解得t=1.6s,与此时t的取值范围不符,
因此这种情况不成立.
综上所述,当t=1.5s或
s,△BMQ是直角三角形.
点评:本题主要考查了等腰梯形的性质,相似三角形的性质等知识点,要注意的是(3)(4)都要分情况讨论,不要漏解.
(2)根据(1)得出的DF的值,可求出BD的长为2
(3)要分两种情况进行讨论
①当N在AD上时,关键是求出PQ,可在直角三角形BPQ中,先表示出BP,然后根据∠QBP的度数即可求出PQ的长,然后根据三角形的面积公式即可得出S,t的函数关系式.
②N在AB上时,还是要先求出PQ的值,可先表示出BN,然后在直角三角形BNP中,表示出BP,进而在直角三角形BPQ中,用BP表示出PQ,即可根据三角形的面积公式得出S,t的函数关系式.
(4)也要分两种情况进行讨论.
第一种情况,当N在AD上时,①当∠BMQ=90°时,那么M,P重合,于是就有BM+ND+FC=BC,即2t+1=4,即可得出t的值.
②当∠BQM=90°时,可先在直角三角形NDQ中,用ND的长,表示出NQ,然后根据求出的D到BC的距离,即可表示出PQ,这时PQ的第一种表示方法.第二种表示方法是,在直角三角形BMQ中,用BM表示出QM,然后在直角三角形QPM中,表示出PQ,然后可让这两个表示PQ的式子相等,即可得出此时的t的值.
第二种情况,当N在AB上时,此时只有∠BQM=90°,方法同②,也是通过不同的表示PQ的方法来得出t的值,方法同(3)②.
解答:解:(1)
(2)过A作AE⊥BC于E,过D作DF⊥BC于F,则四边形AEFD是矩形.
BE=CF=
直角三角形CFD中,CF=1,CD=2,cos∠C=
∴∠C=60°,DF=
∴∠ABE=∠C=60°
∵QM∥AB
∴∠QMP=60°
∵BM=t,PF=ND=t,FC=1,BC=4
∴PM=3-2t,BP=3-t.
直角三角形QPM中,∠QMP=60°,PM=3-2t,QP=
∵QP⊥BC,DF⊥BC
∴QP∥DF,
∴△BQP∽△BDF,
∴
∴5t=6,即t=1.2(s)
当t=1.2s时,QM∥AB
(3)当0<t≤2时,三角形BDF中,BF=3,DF=
∴BD=2
三角形BCD中,CD=2,BD=2
因此BD2+CD2=BC2,
即三角形BDC是直角三角形,且∠BDC=90°,∠DBC=30°.
直角三角形BQP中,BP=3-t,∠DBC=30°,
∴PQ=
因此:S=
当2<t<4时,直角三角形NBP中,∠ABC=60°,BN=4-t,
∴BP=
在直角三角形BPQ中,∠DBC=30°,BP=
∴QP=
因此:S=
(4)当0<t≤2时,即N在AD上时,分两种情况进行讨论:
①当∠BMQ=90°,即M与P点重合,那么BM+PF+CF=BM+ND+CF=2t+1=4
解得:t=1.5s.
②当∠BQM=90°,在直角三角形NQD中,ND=t,∠ADB=∠DBC=30°,
∴NQ=
∵NP=
∴QP=
在直角三角形BQM中,∠DBC=30°,BM=t
∴QM=
在直角三角形QPM中,∠QMP=60°,QM=
∴QP=
∴
解得t=
当2<t<4时,∠BQM=90°
直角三角形BNP中,BN=4-t,∠ABC=60°,
∴BP=
∴PM=BM-BP=t-
在直角三角形BPQ中,∠DBC=30°,BP=
∴PQ=
直角三角形QPM中,∠QMP=60°,PM=
∴PQ=
因此
解得t=1.6s,与此时t的取值范围不符,
因此这种情况不成立.
综上所述,当t=1.5s或
点评:本题主要考查了等腰梯形的性质,相似三角形的性质等知识点,要注意的是(3)(4)都要分情况讨论,不要漏解.
练习册系列答案
相关题目
(2009•唐山二模)某个体经营户把开始六个月试销A、B两种商品的逐月投资与所获利润列成下表:
(1)设投资A种商品金额xA万元时,可获得纯利润yA万元,投资B种商品金额xB万元时,可获得纯利润yB万元,请分别在如图所示的直角坐标系中描出各点,并画出图象;
(2)观察图象,猜测并分别求出yA与xA,yB与xB的函数关系式;
(3)若该经营户准备下月投入资金12万元经营这两种商品,但不知投入A、B两种商品各多少才合算,请你帮助制定一个能获得最大利润的资金投入方案,并计算出这个最大利润是多少.

| 投资A种商品金额 (万元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 获取利润(万元) | 0.65 | 1.40 | 1.85 | 2 | 1.85 | 1.40 |
| 投资B种商品金额 (万元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 获取利润(万元) | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 |
(2)观察图象,猜测并分别求出yA与xA,yB与xB的函数关系式;
(3)若该经营户准备下月投入资金12万元经营这两种商品,但不知投入A、B两种商品各多少才合算,请你帮助制定一个能获得最大利润的资金投入方案,并计算出这个最大利润是多少.
(2009•唐山二模)某个体经营户把开始六个月试销A、B两种商品的逐月投资与所获利润列成下表:
(1)设投资A种商品金额xA万元时,可获得纯利润yA万元,投资B种商品金额xB万元时,可获得纯利润yB万元,请分别在如图所示的直角坐标系中描出各点,并画出图象;
(2)观察图象,猜测并分别求出yA与xA,yB与xB的函数关系式;
(3)若该经营户准备下月投入资金12万元经营这两种商品,但不知投入A、B两种商品各多少才合算,请你帮助制定一个能获得最大利润的资金投入方案,并计算出这个最大利润是多少.

| 投资A种商品金额 (万元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 获取利润(万元) | 0.65 | 1.40 | 1.85 | 2 | 1.85 | 1.40 |
| 投资B种商品金额 (万元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 获取利润(万元) | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 |
(2)观察图象,猜测并分别求出yA与xA,yB与xB的函数关系式;
(3)若该经营户准备下月投入资金12万元经营这两种商品,但不知投入A、B两种商品各多少才合算,请你帮助制定一个能获得最大利润的资金投入方案,并计算出这个最大利润是多少.