题目内容
34
34
.分析:求出四边形SPQR是平行四边形,推出SR=PQ,PS=QR,证三角形全等得出SR=PQ,RQ=PS,根据相似求出DS,根据勾股定理求出即RS,RQ,PQ,SP即可.
解答:解:∵入射角与反射角相等,
∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,
∵四边形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,
∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,
∴∠DSP=∠AQP=∠CSR=∠BQR,
∴∠RSP=∠RQP,
同理∠SRQ=∠SPQ,
∴四边形SPQR是平行四边形,
∴SR=PQ,PS=QR,
在△DSP和△BQR中
∴△DSP≌△BQR,
∴BR=DP=3,BQ=DS,
∵四边形ABCD是矩形,
∴AB=CD=8,BC=AD=15,
∴AQ=8-DS,AP=15-3=12,
∵∠SPD=∠APQ,
∴△SDP∽△QAP,
∴
=
∴
=
,
DS=
,
在Rt△DSP中,由勾股定理得:PS=QR=
=
,
同理PQ=RQ=
,
∴QP+PS+SR+QR=2×
+2×
=34,
故答案为:34.
∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,
∵四边形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,
∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,
∴∠DSP=∠AQP=∠CSR=∠BQR,
∴∠RSP=∠RQP,
同理∠SRQ=∠SPQ,
∴四边形SPQR是平行四边形,
∴SR=PQ,PS=QR,
在△DSP和△BQR中
|
∴△DSP≌△BQR,
∴BR=DP=3,BQ=DS,
∵四边形ABCD是矩形,
∴AB=CD=8,BC=AD=15,
∴AQ=8-DS,AP=15-3=12,
∵∠SPD=∠APQ,
∴△SDP∽△QAP,
∴
| DP |
| DS |
| AP |
| AQ |
∴
| 3 |
| DS |
| 12 |
| 8-DS |
DS=
| 8 |
| 5 |
在Rt△DSP中,由勾股定理得:PS=QR=
32+(
|
| 17 |
| 5 |
同理PQ=RQ=
| 68 |
| 5 |
∴QP+PS+SR+QR=2×
| 17 |
| 5 |
| 68 |
| 5 |
故答案为:34.
点评:本题考查了相似三角形性质和判定,矩形性质,勾股定理,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度.
练习册系列答案
相关题目