题目内容
一直角三角形两条直角边的和为7,面积为6,求斜边的长.
分析:设一直角边为x,则另一直角边为9-x,可得面积是
x(7-x),根据“面积为6”作为相等关系,即可列方程,解方程即可求得直角边的长,再根据勾股定理求得斜边长.
| 1 |
| 2 |
解答:解:设一直角边为x,则另一直角边为9-x,根据题意得
x(7-x)=6
解得x=4或x=3
则另一直角边为3或4,
根据勾股定理可知斜边长为
=5.
| 1 |
| 2 |
解得x=4或x=3
则另一直角边为3或4,
根据勾股定理可知斜边长为
| 32+42 |
点评:此题主要利用三角形的面积公式寻找相等关系,同时也考查了勾股定理的内容.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
练习册系列答案
相关题目