题目内容

如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=数学公式BC,CE=数学公式AC,BE、AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF•DA;④AF•BE=AE•AC,正确的结论有


  1. A.
    4个
  2. B.
    3个
  3. C.
    2个
  4. D.
    1个
A
分析:本题是开放题,对结论进行一一论证,从而得到答案.
①利用△ABD≌△BCE,再用三角形的一个外角等于与它不相邻的两个内角和,即可证∠AFE=60°;
②从CD上截取CM=CE,连接EM,证△CEM是等边三角形,可证明DE⊥AC;
③△BDF∽△ADB,由相似比则可得到CE2=DF•DA;
④只要证明了△AFE∽△BAE,即可推断出AF•BE=AE•AC.
解答:解:∵△ABC是等边三角形
∴AB=BC=AC,∠BAC=∠ABC=∠BCA=60°
∵BD=BC,CE=AC
∴BD=EC
∴△ABD≌△BCE
∴∠BAD=∠CBE,
∵∠ABE+∠EBD=60°
∴∠ABE+∠CBE=60°
∵∠AFE是△ABF的外角
∴∠AFE=60°
∴①是对的;
如图,从CD上截取CM=CE,连接EM,则△CEM是等边三角形
∴EM=CM=EC
∵EC=CD
∴EM=CM=DM
∴∠CED=90°
∴DE⊥AC,
∴②是对的;
由前面的推断知△BDF∽△ADB
∴BD:AD=DF:DB
∴BD2=DF•DA
∴CE2=DF•DA
∴③是对的;
在△AFE和△BAE中,∠BAE=∠AFE=60°,∠AEB是公共角
∴△AFE∽△BAE
∴AF•BE=AE•AC
∴④是正确的.
故选A.
点评:本题主要应用到了三角形外角与内角的关系,直角三角形的判定,全等三角形和相似三角形的判定及性质,内容较多,较为复杂.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网