题目内容
| A、56 | B、64 | C、72 | D、90 |
分析:由题意可知,三角形每条边上有3盆花,共计3×3-3盆花,正四边形每条边上有4盆花,共计4×4-4盆花,正五边形每条边上有5盆花,共计5×5-5盆花,…则正n变形每条边上有n盆花,共计n×n-n盆花,结合图形的个数解决问题.
解答:解:∵第一个图形:三角形每条边上有3盆花,共计32-3盆花,
第二个图形:正四边形每条边上有4盆花,共计42-4盆花,
第三个图形:正五边形每条边上有5盆花,共计52-5盆花,
…
第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2-(n+2)盆花,
则第8个图形中花盆的个数为(8+2)2-(8+2)=90盆.
故选:D.
第二个图形:正四边形每条边上有4盆花,共计42-4盆花,
第三个图形:正五边形每条边上有5盆花,共计52-5盆花,
…
第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2-(n+2)盆花,
则第8个图形中花盆的个数为(8+2)2-(8+2)=90盆.
故选:D.
点评:本题主要考查归纳与总结的能力,关键在于根据题意总结归纳出花盆总数的变化规律.
练习册系列答案
相关题目