题目内容

如图,四边形ABCD是正方形,GCD边上的一个动点(点GC、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判

(2)将原题中正方形改为矩形(如图图6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.

(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k,求BE2DG2的值.

答案:
解析:

  (1)①BGDEBGDE  1分

  ②BGDEBGDE仍然成立  2分

  在图(2)中证明如下

  ∵四边形ABCD、四边形ABCD都是正方形

  ∴BCCDCGCE,∠BCD=∠ECG=90°

  ∴∠BCG=∠DCE

  ∴△BCG≌△DCE(SAS)  3分

  ∴BGDE ∠CBG=∠CDE

  又∵∠CBG+∠BHC=90° ∠BGC=∠DHO

  ∴∠CDE+∠DHO=90° ∴∠DOH=90°

  ∴BGDE  4分

  (2)BGDE成立,BGDE不成立  6分

  简要说明如下

  ∵四边形ABCD、四边形CEFG都是矩形,

  且ABaBCbCGkbCEka(abk>0)

  ∴,∠BCD=∠ECG=90°

  ∴∠BCG=∠DCE

  ∴△BCG∽△DCE  7分

  ∴∠CBG=∠CDE

  又∵∠BHC=∠DHO ∠CBG+∠BHC=90°

  ∴∠CDE+∠DHO=90° ∴∠DOH=90°

  ∴BGDE  8分

  (3)∵BGDE

  ∴BE2DG2OB2OE2OG2OD2BD2GE2

  又∵a=3,b=2,k

  ∴BD2GE2=22+32+12+()2

  ∴BE2DG2  10分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网