题目内容
如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.
求证:(1)BE=DF;(2)AF∥CE.
已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.
(1)mn; (2)m2+n2-mn.
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.
求证:(1)CG=BH;
(2)FC2=BF·GF;
(3).
如图,在一个凸四边形ABCD中,E、F、G、H分别是各边的中点,图中阴影部分的两块面积之和是四边形ABCD面积的______.
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
A. B.
C. D. 6
分解因式:x3y-2x2y+xy= .
已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.