题目内容

如图所示,O是直线AB上一点,∠COB=46°,OD平分∠AOC,OE平分∠COB,则∠DOE=________,如果将上题中∠COB=46°这个条件去掉,是否还能求出∠DOE的度数呢?如果可以求出,请写出求解过程.

90°
分析:先求出∠AOC,再根据角平分线的定义求出∠COD和∠COE,然后计算即可得解;
根据角平分线的定义表示出∠COD和∠COE,再根据∠AOC+∠BOC=180°计算即可得解.
解答:∵∠COB=46°,
∴∠AOC=180°-∠COB=180°-46°=134°,
∵OD平分∠AOC,OE平分∠COB,
∴∠COD=∠AOC=×134°=67°,
∠COE=∠BOC=×46°=23°,
∴∠DOE=∠COD+∠COE=67°+23°=90°;
能求出∠DOE=90°.
∵OD平分∠AOC,OE平分∠COB,
∴∠COD=∠AOC,
∠COE=∠BOC,
∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×180°=90°.
点评:本题考查了角平分线的定义,比较简单,熟记定义并注意整体思想的利用是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网