题目内容
如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为________.(注:把你认为正确的答案序号都填上)
①、③、④
分析:由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.
解答:∵∠CAE=∠DAB,
∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;
又AC=AD;
所以要判定△ABC≌△AED,需添加的条件为:
①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).
故填①、③、④.
点评:本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
分析:由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.
解答:∵∠CAE=∠DAB,
∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;
又AC=AD;
所以要判定△ABC≌△AED,需添加的条件为:
①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).
故填①、③、④.
点评:本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关题目
①、③、④
.(注:把你认为正确的答案序号都填上)如图,已知∠CAE=∠DAB,AC=AD,增加下列条件:①AB=AE;②BC=ED;
③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有 ( )
A.4个 B.3个 C.2个 D.1个
第4题 第5题
如图,已知∠CAE=∠DAB,AC=AD,增加下列条件:①AB=AE;②BC=ED;
③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有 ( )
| A.4个 | B.3个 | C.2个 | D.1个 |
第4题 第5题