题目内容
求证:(1)△ABC是等边三角形;
(2)AE=
| 1 | 3 |
分析:(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;
(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.
(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.
解答:
证明:(1)连接OD,得OD∥AC;
∴∠BDO=∠A;
又OB=OD,
∴∠OBD=∠ODB;
∴∠OBD=∠A;
∴BC=AC;
又∵AB=AC,
∴△ABC是等边三角形;
(2)如上图,连接CD,则CD⊥AB;
∴D是AB中点;
∵AE=
AD=
AB,
∴EC=3AE;
∴AE=
CE.
∴∠BDO=∠A;
又OB=OD,
∴∠OBD=∠ODB;
∴∠OBD=∠A;
∴BC=AC;
又∵AB=AC,
∴△ABC是等边三角形;
(2)如上图,连接CD,则CD⊥AB;
∴D是AB中点;
∵AE=
| 1 |
| 2 |
| 1 |
| 4 |
∴EC=3AE;
∴AE=
| 1 |
| 3 |
点评:本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.
练习册系列答案
相关题目