题目内容

(2013•山西模拟)如图,DB为半圆的直径,A为BD延长线上一点,AC切半圆于点E,BC⊥AC于点C,交半圆于点F.已知BD=4,AD=1,则CF=
2
3
2
3
分析:首先利用三角形相似的判定方法证明△AEO∽△OMB,进而求出CE与BC的长,再利用切割线定理求出CF即可.
解答:解:连接OE,做OM⊥BC,
∵BC⊥AC,OM⊥BC,
OM∥AC,
∴∠A=∠MOB,
∴∠AEO=∠OMB,
∴△AEO∽△OMB,
AE
OM
=
AO
BO

∵OD=
1
2
BD=2,
∴A0=AD+OD=3,
∴AE=
OA2-OE2
=
5

解得:OM=
2
5
3

∴CM=OE=2,OM=CE=
2
5
3

∴BM=
4
3

∴BC=BM+CM=2+
4
3
=
10
3

∵CE2=CF×BC,
解得:CF=
2
3

故答案为:
2
3
点评:此题主要考查了切线的性质定理、垂径定理以及相似三角形的性质定理与判定定理,求出BC与CE的长是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网