题目内容
求证:四边形EFGH是正方形.
分析:根据正方形的性质求出△COH≌△BOE,得到OE=OH,同理可证OE=OF=OG,根据等量代换得到EG=FH,又因为EG⊥FH,所以四边形EFGH为正方形.
解答:∵四边形ABCD为正方形,
∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠2+∠3.
∵EG⊥FH,
∴∠1+∠3=90°.
∴∠1=∠2.
∴△COH≌△BOE.
∴OE=OH.
同理可证:OE=OF=OG.
∴OE+OG=OF+OH,即EG=FH.
又∵EG⊥FH,
∴四边形EFGH为正方形.
∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠2+∠3.
∵EG⊥FH,
∴∠1+∠3=90°.
∴∠1=∠2.
∴△COH≌△BOE.
∴OE=OH.
同理可证:OE=OF=OG.
∴OE+OG=OF+OH,即EG=FH.
又∵EG⊥FH,
∴四边形EFGH为正方形.
点评:根据正方形的性质求证三角形全等是解决本题的关键.
练习册系列答案
相关题目