题目内容

精英家教网如图,已知△ABC中,∠ABC=90°,AB=BC,AC=2
85
,三个顶点C,A,B依次在相互平行的三条直线l1,l2,l3上,且l2,l3之间的距离为7,那么 l1,l2之间的距离为(  )
A、5B、4C、3D、2
分析:过A点作AD⊥l3,过C点作CE⊥l3,垂足分别为D、E;利用AAS求证Rt△ADB≌Rt△BEC,得出BE=AD=7,再根据已知数值利用勾股定理求出BC,EC,然后利用=CE-EF即可.
解答:精英家教网解:过A点作AD⊥l3,过C点作CE⊥l3,垂足分别为D、E;如图所示,
∵l1,l2,l3相互平行,
∴Rt△ADB≌Rt△BEC,BE=AD=7,
∵2BC2=AC2,∴BC=
1
2
(2
85
)
2
=
170

又∵EC=
BC2-BE2
=
(
170
)
2
-72
=11
.则CF=CE-EF=11-7=4,
即l1,l2之间的距离为4.
故选B.
点评:此题主要考查勾股定理,平行线之间的距离,全等三角形的判定与性质等知识点的理解和掌握,此题的关键是作好辅助线,此题有一定难度,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网