题目内容
分解因式:ax2﹣9ay2= .
已知关于x的方程有实数根,则a的取值范围是
A. B. C. 且 D.
甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了 ______米.
直线y=﹣x+2与x轴、y轴分别交于点A、点C,抛物线经过点A、点C,且与x轴的另一个交点为B(﹣1,0).
(1)求抛物线的解析式;
(2)点D为第一象限内抛物线上的一动点.
①如图1,若CD=AD,求点D的坐标;
②如图2,BD与AC交于点E,求S△CDE:S△CBE的最大值.
计算: +|﹣2|﹣tan60°.
甲和乙下棋,甲执白子,乙执黑子.如图,已共下了7枚棋子,棋盘中心黑子的位置用(﹣1,0)表示,其右下角黑子的位置用(0,﹣1)表示.甲将第4枚白子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )
A. (﹣1,1) B. (﹣2,1) C. (1,﹣2) D. (﹣1,﹣2)
如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF。
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
下列根式中,是最简二次根式的是( )
A. B. C. D.
为了增强学生体质,学校鼓励学生多参加体育锻炼,小华同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED为正方形,∠DCE=45°,AB=100米.小华某天绕该道路晨跑5圈,求小华该天晨跑的路程是多少?(结果保留整数,)