题目内容

如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,沿DE所在直线折叠,使点B恰好与点A重合,若CD=2,则AB的值为( )

A.2
B.4
C.4
D.8
【答案】分析:由角平分线可得角相等,由折叠可得角相等,通过三角和为90°得到∠A=30°,利用直角三角形中30°角的性质得到结果.
解答:解:由题意可得,DE⊥AB,∠A=∠DBA
∴∠DBC=∠A=∠DBA=30°
∴AB=2BC
在Rt△BDC中,∠DBC=30°,CD=2
∴BD=4
∴BC=2
∴AB=4
故选C.
点评:此题考查了角平分线,直角三角形中,30°锐角所对的直角边等于斜边的一半等知识;得到30°的角是正确解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网