题目内容
【题目】如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转.
(1)直接写出∠DPC的度数.
(2)如图②,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,当PC与PB重合时,求旋转的时间是多少?
(3)在(2)的条件下,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请直接写出旋转的时间.
![]()
【答案】(1)90°;(2)旋转的时间是30秒时PC与PB重合;(3)15秒或26.25秒或37.5秒时其中一条射线平分另两条射线的夹角.
【解析】
(1)易得∠DPC=180°-∠APC-∠BPD即可求
(2)只需设旋转的时间是t秒时PC与PB重合,列方程解可得
(3)一条射线平分另两条射线的夹角,分三种情况:当PD平分∠BPC时;当PC平分∠BPC时;当PB平分∠DPC时,计算每种情况对应的时间即可.
解:
(1)∠DPC=180°-∠APC-∠BPD=180°-60°-30°=90°
故答案为:90°
(2)设旋转的时间是t秒时PC与PB重合,根据题意列方程得
5t-t=30+90
解得t=30
又∵180÷5=36秒
∴30<36
故旋转的时间是30秒时PC与PB重合.
(3)设t秒时其中一条射线平分另两条射线的夹角,分三种情况:
①当PD平分∠BPC时,5t-t=90-30,解得t=15
②当PC平分∠BPC时,
,解得t=26.25
③当PB平分∠DPC时,5t-t=90-2×30,解得t=37.5
故15秒或26.25秒或37.5秒时其中一条射线平分另两条射线的夹角.