题目内容
学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?若设篮球有x个,排球有y个,依题意,得到的方程组是( )
A. B. C. D.
已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=900,点A、C的坐标分别为A(-2,0),C(1,0),tan∠BAC=.
(1)求点B的坐标。
(2)在x轴上找一点D,连接DB,使得△BCD与△ABC相似(不包括全等),并求点D的坐标。
如图,在直角坐标系中,直线分别与x轴、y轴交于点M、N,点A、B分别在y轴、x轴上,且∠ABO=30°,AB=4,将△ABO绕原点O顺时针旋转180°,在旋转过程中,当AB与直线MN平行时点A的坐标为( )
已知代数式______ ,n=_______。
中国的领水面积约为,其中南海的领水面积约占我国领水面积的,用科学计数法表示中国南海的领水面积是( )
心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x (单位:分钟)之间满足函数关系式y=-0.1x2+2.6x+43(0≤30)的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.
已知y与x成正比例,且x=2时y=-6,则y=9时x=________
在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
以下列各组数为边的三角形中,是直角三角形的有( )(1)3,4,5;(2), , ;(3)32,42,52;(4)0.03,0.04,0.05.
A. 1个 B. 2个 C. 3个 D. 4个