题目内容
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.
分析:(1)P点的横坐标与N点的横坐标相同,求出CN的长即可得出P点的横坐标,然后通过求直线AC的函数解析式来得出P点的纵坐标,由此可求出P点的坐标;
(2)可通过求△MPA的面积和x的函数关系式来得出△MPA的面积最大值及对应的x的值.
△MPA中,MA=OA-OM,而MA边上的高就是P点的纵坐标,由此可根据三角形的面积计算公式求出S与x的函数关系式,进而根据函数的性质得出S的最大值和对应的x的值;
(3)可分三种情况进行讨论:
①MP=AP时,延长NP交x轴于Q,则有PQ⊥OA,那么此时有AQ=BN=
MA,由此可求出x的值.
②当MP=AM时,可根据MP、AM的不同表达式得出一个关于x的方程即可求出x的值.
③当PA=PM时,可在直角三角形PMQ中,根据勾股定理求出x的值.
综上所述可得出符合条件的x的值.
(2)可通过求△MPA的面积和x的函数关系式来得出△MPA的面积最大值及对应的x的值.
△MPA中,MA=OA-OM,而MA边上的高就是P点的纵坐标,由此可根据三角形的面积计算公式求出S与x的函数关系式,进而根据函数的性质得出S的最大值和对应的x的值;
(3)可分三种情况进行讨论:
①MP=AP时,延长NP交x轴于Q,则有PQ⊥OA,那么此时有AQ=BN=
| 1 |
| 2 |
②当MP=AM时,可根据MP、AM的不同表达式得出一个关于x的方程即可求出x的值.
③当PA=PM时,可在直角三角形PMQ中,根据勾股定理求出x的值.
综上所述可得出符合条件的x的值.
解答:
解:(1)由题意可知C(0,8),又A(6,0),
所以直线AC解析式为:y=-
x+8,
因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得y=
x,
所以P点坐标为(6-x,
x);
(2)设△MPA的面积为S,在△MPA中,MA=6-x,MA边上的高为
x,
其中,0≤x<6,
∴S=
(6-x)×
x=
(-x2+6x)=-
(x-3)2+6,
∴S的最大值为6,此时x=3;
(3)延长NP交x轴于Q,则有PQ⊥OA
①若MP=PA,
∵PQ⊥MA,
∴MQ=QA=x,
∴3x=6,
∴x=2;
②若MP=MA,则MQ=6-2x,PQ=
x,PM=MA=6-x,
在Rt△PMQ中,
∵PM2=MQ2+PQ2,
∴(6-x)2=(6-2x)2+(
x)2,
∴x=
;
③若PA=AM,
∵PA=
x,AM=6-x,
∴
x=6-x,
∴x=
,
综上所述,x=2,或x=
,或x=
.
所以直线AC解析式为:y=-
| 4 |
| 3 |
因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得y=
| 4 |
| 3 |
所以P点坐标为(6-x,
| 4 |
| 3 |
(2)设△MPA的面积为S,在△MPA中,MA=6-x,MA边上的高为
| 4 |
| 3 |
其中,0≤x<6,
∴S=
| 1 |
| 2 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
∴S的最大值为6,此时x=3;
(3)延长NP交x轴于Q,则有PQ⊥OA
①若MP=PA,
∵PQ⊥MA,
∴MQ=QA=x,
∴3x=6,
∴x=2;
②若MP=MA,则MQ=6-2x,PQ=
| 4 |
| 3 |
在Rt△PMQ中,
∵PM2=MQ2+PQ2,
∴(6-x)2=(6-2x)2+(
| 4 |
| 3 |
∴x=
| 108 |
| 43 |
③若PA=AM,
∵PA=
| 5 |
| 3 |
∴
| 5 |
| 3 |
∴x=
| 9 |
| 4 |
综上所述,x=2,或x=
| 108 |
| 43 |
| 9 |
| 4 |
点评:本题着重考查了二次函数的应用、矩形的性质、图形面积的求法等知识点,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关题目