题目内容
如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,B=E。
求证:ADB=FCE.
如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E, A1C1分别交AC,BC于点D,F,下列结论:
①∠CDF=α;②A1E=CF;③DF=FC;④BE=BF.
其中正确的有( )
A.②③④ B.①③④ C.①②④ D.①②③
(本题10分)阅读材料:分解因式:
【解析】
=
=,
此种方法抓住了二次项和一次项的特点,然后加一项,使三项成为完全平方式,我们把这种分解因式的方法叫配方法.
(1)用上述方法分解因式:;
(2)无论取何值,代数式总有一个最小值,请尝试用配方法求出当取何值时代数式的值最小,并求出这个最小值.
已知反比例函数的图象如图,则一元二次方程的根的情况是( ).
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法确定
如图1,在△ABC中,ACB=90°,BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点.DH⊥AC,垂足为H,连接EF,HF。
(1)如图1,若点H是AC的中点,AC=,求AB,BD的长。
(2)如图1,求证:HF=EF。
(3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由。
已知△ABC∽△DEF,与的相似比为4:1,则与对应边上的高之比为 .
一元二次方程的根是( )
A. B.
C. D.
如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式(是多边形内的格点数,是多边形边界上的格点数)计算,这个公式称为“皮克定理”。现有一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.
(1)这个格点多边形边界上的格点数= (用含的代数式表示);
(2)设该格点多边形外的格点数为,则= .
已知:一次函数的图象与反比例函数()的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.