题目内容

如图,P是正方形ABCD的外接圆弧AD上的一点,点E在PA的延长线上,且AE=PC.已知PB=5,求PE的长?

解:连接AC,
∵∠ACP 与∠ABP 为弧AP所对圆周角,
∴∠ACP=∠ABP,
∵弧AB为1/4圆弧,
∴∠APB=∠ACB=45°,
∴∠EAB=∠ABP+∠APB=∠ACP+∠ACB=∠BCP,
∵AB=BC,AE=PC,
∴△ABE≌△BCP,
∴∠E=∠BPC=45°,
又∵∠EPB=45°,
∴∠EBP=90°,
∴PE=•BP=5
分析:根据∠ACP=∠ABP,得出∠APB=∠ACB=45°,进而得出△ABE≌△BCP,利用∠EBP=90°,PE=•BP 即可得出答案.
点评:此题主要考查了圆周角定理以及全等三角形的证明和正方形的性质,得出△ABE≌△BCP 进而得出△EBP为等腰直角三角形是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网