题目内容
如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点,
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,连接OC,AO延长线交⊙O于点D,OF是∠DOB的平分线,E为OF上一点,连接BE.
(1)求证:AB与⊙O相切;
(2)①当∠OEB=_____时,四边形OCBE为矩形;
②在①的条件下,若AB=4,则OA=_____时,四边形OCBE为正方形?
一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )
A. 平均数 B. 中位数 C. 众数 D. 方差
如图,菱形ABCD的边长为2cm,∠A=60°,弧BD是以点A为圆心、AB长为半径的弧,弧CD是以点B为圆心、BC长为半径的弧,则阴影部分的面积为( )
A. 1cm2 B. cm2 C. 2cm2 D. πcm2
如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,,④360°﹣α﹣β,∠AEC的度数可能是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
菏泽市每年5月份举行九年级理化生实验操作考试,小明最擅长的是生物,其次是化学.如果规定每位学生随机抽取其中两科实验进行考试,那么
(1)小明能参加生物实验考试的概率是多少;
(2)用列表或画树状图的方法求小明恰好能参加生物和化学两科的实验考试的概率.
如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴x=,且经过点(2,0),下列说法:
①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1>y2,其中说法正确的是( )
A. ①② B. ①②③ C. ①②④ D. ①③④
已知有一根长为10的铁丝,折成了一个矩形框.则这个矩形相邻两边a,b之间函数的图象大致为( )
A. B. C. D.
如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.