题目内容
如图,在等腰△ABC中,AB=AC,分别过点B、C作两腰的平行线,经过点A的直线与两平行线分别交于点D、E,连接DC、BE,DC与AB边相交于点M,BE与AC边相交于点N.求证:AM=NC.
证明:延长DB、EC交于点P,
∵BD∥AC,AB∥EC,
∴四边形ABPC为平行四边形,
∵AB=AC,
∴?ABPC是菱形,
∴AB=BP=PC=CA,
∵BD∥AC,
∴△EAC∽△EDP,
∴
,
同理:
,
∴
,
∵四边形ABPC是平行四边形,
∴∠BAC=∠P,
∵AC∥DP,
∴∠ACD=∠CDP,
∴△AMC∽△PCD,
∴
,
∵AC=CP,
∴
,
∵AC=BP,
∴AM=CN.
分析:首先延长DB、EC交于点P,由BD∥AC,AB∥EC,可得四边形ABPC为平行四边形,又由AB=AC,即可证得:?ABPC是菱形,可得AB=BP=PC=CA,又可证得:△EAC∽△EDP与△AMC∽△PCD,根据相似三角形的对应边成比例,则可证得:CN=AM.
点评:此题考查了平行四边形,菱形的判定与性质以及相似三角形的判定与性质.此题综合性很强,注意掌握辅助线的作法,注意数形结合思想的应用.
∵BD∥AC,AB∥EC,
∴四边形ABPC为平行四边形,
∵AB=AC,
∴?ABPC是菱形,
∴AB=BP=PC=CA,
∵BD∥AC,
∴△EAC∽△EDP,
∴
同理:
∴
∵四边形ABPC是平行四边形,
∴∠BAC=∠P,
∵AC∥DP,
∴∠ACD=∠CDP,
∴△AMC∽△PCD,
∴
∵AC=CP,
∴
∵AC=BP,
∴AM=CN.
分析:首先延长DB、EC交于点P,由BD∥AC,AB∥EC,可得四边形ABPC为平行四边形,又由AB=AC,即可证得:?ABPC是菱形,可得AB=BP=PC=CA,又可证得:△EAC∽△EDP与△AMC∽△PCD,根据相似三角形的对应边成比例,则可证得:CN=AM.
点评:此题考查了平行四边形,菱形的判定与性质以及相似三角形的判定与性质.此题综合性很强,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目
| A、∠1=∠A | ||
B、∠1=
| ||
| C、∠1=2∠A | ||
| D、无法确定 |