ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁÏ£¬Êýѧ¼Ò¸ß˹ÔÚÉÏÑ§Ê±Ôø¾Ñо¿¹ýÕâÑùÒ»¸öÎÊÌ⣬1+2+3+¡+10=£¿
¾¹ýÑо¿£¬Õâ¸öÎÊÌâµÄÒ»°ãÐÔ½áÂÛÊÇ1+2+3+¡+n=
n£¨n+1£©£¬ÆäÖÐnΪÕýÕûÊý£¬ÏÖÔÚÎÒÃÇÀ´Ñо¿Ò»¸öÀàËÆµÄÎÊÌ⣺1¡Á2+2¡Á3+¡+ n£¨n+1£©=£¿
¹Û²ìÏÂÃæÈý¸öÌØÊâµÄµÈʽ£º
1¡Á2=
£¨1¡Á2¡Á3-0¡Á1¡Á2£©
2¡Á3=
£¨2¡Á3¡Á4-1¡Á2¡Á3£©
3¡Á4=
£¨3¡Á4¡Á5-2¡Á3¡Á4£©
½«ÕâÈý¸öµÈʽµÄÁ©±ßÏà¼Ó£¬¿ÉÒԵõ½1¡Á2+2¡Á3+3¡Á4=
¡Á3¡Á4¡Á5=20.
¶ÁÍêÕâ¶Î²ÄÁÏ£¬ÇëÄã¼ÆË㣺
£¨1£©1¡Á2+2¡Á3+¡+100¡Á101£»£¨Ö»Ðèд³ö½á¹û£©£¨2·Ö£©
£¨2£©1¡Á2+2¡Á3+¡+ n£¨n+1£©£»(д³ö¼ÆËã¹ý³Ì) £¨5·Ö£©
£¨3£©1¡Á2¡Á3+2¡Á3¡Á4+¡+ n£¨n+1£©£¨n+2£©£®£¨Ö»Ðèд³ö½á¹û£©£¨3·Ö£©
£¨1£© 343400£»
£¨2£©
n(n+1)(n+2)
(3)
n(n+1)(n+2)(n+3)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿