题目内容

(本题满分9分)已知如图,矩形的长,宽,将沿翻折得

(1)填空:度,点坐标为(  ,  );

(2)若两点在抛物线上,求的值,并说明点在此抛物线上;

(3)在(2)中的抛物线段(不包括点)上,是否存在一点,使得四边形的面积最大?若存在,求出这个最大值及此时点的坐标;若不存在,请说明理由.

 

 

 

解:(1)  ··························································· 4分

 

(2)在抛物线上,

 

  ······················································ 2分

 

 

抛物线的解析式为  ······································ 1分

点坐标为    

 

点在此抛物线上.  ····························································· 1分

(3)假设存在这样的点,使得四边形的面积最大.

面积为定值,

要使四边形的面积最大,只需使的面积最大.

过点轴分别交轴于,过点轴交

 

 

 

  ························································ 2分

 

有最大值.

 

时,的最大值是

 

四边形的面积的最大值为.  ··································· 1分

 

此时点的坐标为.  ·················································· 1分

 

所以存在这样的点,使得四边形的面积最大,其最大值为

 

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网