题目内容
【题目】如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=
,EF=2,∠H=120°,则DN的长为( ) ![]()
A.![]()
B.![]()
C.
﹣ ![]()
![]()
D.2
﹣ ![]()
【答案】C
【解析】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=
CD=
,△GCP为直角三角形,
∵四边形EFGH是菱形,∠EHG=120°,
∴GH=EF=2,∠OHG=60°,EG⊥FH,
∴OG=GHsin60°=2×
=
,由折叠的性质得:CG=OG=
,OM=CM,∠MOG=∠MCG,∴PG=
=
,
∵OG∥CM,
∴∠MOG+∠OMC=180°,
∴∠MCG+∠OMC=180°,
∴OM∥CG,
∴四边形OGCM为平行四边形,
∵OM=CM,
∴四边形OGCM为菱形,
∴CM=OG=
,
根据题意得:PG是梯形MCDN的中位线,
∴DN+CM=2PG=
,∴DN=
﹣
;
故选:C.![]()
延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=
,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.
【题目】某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:
![]()
乙校成绩统计表
分数/分 | 人数/人 |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在图①中,“80分”所在扇形的圆心角度数为________;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.