题目内容

如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为(  )

 

A.

30,2

B.

60,2

C.

60,

D.

60,

考点:

旋转的性质;含30度角的直角三角形..

专题:

压轴题.

分析:

先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.

解答:

解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,

∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,

∵△EDC是△ABC旋转而成,

∴BC=CD=BD=AB=2,

∵∠B=60°,

∴△BCD是等边三角形,

∴∠BCD=60°,

∴∠DCF=30°,∠DFC=90°,即DE⊥AC,

∴DE∥BC,

∵BD=AB=2,

∴DF是△ABC的中位线,

∴DF=BC=×2=1,CF=AC=×2=

∴S阴影=DF×CF=×=

故选C.

点评:

本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:

①对应点到旋转中心的距离相等;

②对应点与旋转中心所连线段的夹角等于旋转角;

③旋转前、后的图形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网