题目内容

如图,矩形ABCD中,AB=8,BC=9,⊙E和⊙F相外切,且它们分别与矩形的一对对角的两边相切,则圆心距EF=______.
设⊙F的半径为y,⊙E的半径x,
过E与F分别作CD与BC的垂线EN,FM,垂足分别为N,M,EN、MF交于点G,
则有:FG=8-(x+y),GE=9-(x+y)
由勾股定理可得:
(x+y)2=[8-(x+y)]2+[9-(x+y)]2
整理,得(x+y-29)(x+y-5)=0,
由题意知1≤x≤4,∴x+y=5,
∴圆心距EF=5.
故答案为:5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网