题目内容
某商品原价100元,连续两次涨价x%后售价为121元,则列出的方程是_____
计算:(-2)2+4tan60°-8cos30°-.
先化简,再求值: 其中,.
如图所示的运算程序中,若开始输入的x值为15,则第1次输出的结果为18,第2次输出的结果为9,···,第2017次输出的结果为( )
A. 3 B. 18 C. 12 D. 6
如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC于F.
(1)求证:四边形AEFD是菱形;
(2)如果∠A=60度,AD=5,求菱形AEFD的面积.
菱形ABCD,∠BAD=120°,且AB=3,则BD=_____
如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为( )
A. 6 B. 12 C. 2 D. 4
下列实数:3.1415926…,, ,0.2121121112, ,0.303030…,—, .其中无理数有________个.
如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.
【答案】证明见解析.
【解析】试题分析:先根据角平分线的性质可证得:MA=MB,
再根据HL定理判定Rt△MAO≌Rt△MBO,然后可证得:OA=OB,
根据等边对等角可证得: ∠OAB=∠OBA.
试题解析:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,
∴AM=BM,
在Rt△MAO和Rt△MAO中, ,
∴Rt△AOM≌Rt△BOM(HL),
∴OA=OB,
∴∠OAB=∠OBA.
【题型】解答题【结束】21
如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.
(1)求∠BDC的度数.
(2)求AC的长度.