题目内容
【题目】如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为( )
![]()
A.
B.
C.
D. ![]()
【答案】B
【解析】
连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BHBG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.
解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D
∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°
∴四边形OECF是正方形
∵由△ABC的面积可知
×AC×BC=
×AC×OE+
×BC×OF
∴OE=OF=
a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a
∵由切割线定理可得BF2=BHBG
∴
a2=BH(BH+a)
∴BH=
或BH=
(舍去)
∵OE∥DB,OE=OH
∴△OEH∽△BDH
∴![]()
∴BH=BD,CD=BC+BD=
.
![]()
故选:B.
【题目】如图,P是半圆弧
上一动点,连接PA、PB,过圆心O作
交PA于点C,连接
已知
,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
| 0 |
| 1 |
| 2 |
| 3 |
| 3 |
|
|
|
| 6 |
说明:补全表格时相关数据保留一位小数![]()
建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:直接写出
周长C的取值范围是______.
![]()