题目内容
先化简,后求值
(1)求
x-2(x-
y2)+(-
x+
y2)的值,其中x=-2,y=
.
(2)4x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-
y=1.
(3)若2x2+xy+3y2=-5,求(9x2+2xy+6)-(xy+7x2-3y2-5)的值.
(4)设A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3.求x=-2时,A-(B+C)的值.
(1)求
| 1 |
| 2 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
(2)4x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-
| 1 |
| 2 |
(3)若2x2+xy+3y2=-5,求(9x2+2xy+6)-(xy+7x2-3y2-5)的值.
(4)设A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3.求x=-2时,A-(B+C)的值.
分析:(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;
(2)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;
(3)原式去括号合并得到最简结果,将已知等式代入计算即可求出值;
(4)将A,B,C代入A-(B+C),去括号合并得到最简结果,将x的值代入计算即可求出值.
(2)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;
(3)原式去括号合并得到最简结果,将已知等式代入计算即可求出值;
(4)将A,B,C代入A-(B+C),去括号合并得到最简结果,将x的值代入计算即可求出值.
解答:解:(1)原式=
x-2x+
y2-
x+
y2
=-3x+y2,
当x=-2,y=
时,原式=6
;
(2)原式=4x2y-6xy+8xy-4+x2y+1
=5x2y+2xy-3,
当x=-
,y=1时,原式=
-1-3=-2
;
(3)∵2x2+xy+3y2=-5,
∴原式=9x2+2xy+6-xy-7x2+3y2+5=2x2+xy+3y2+11=-5+11=6;
(4)∵A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3,
∴A-(B+C)
=(x3-2x2+4x+3)-(x2+2x-6+x3+2x-3)
=x3-2x2+4x+3-x2-2x+6-x3-2x+3
=-3x2+12,
当x=-2时,原式=-12+12=0.
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 3 |
=-3x+y2,
当x=-2,y=
| 2 |
| 3 |
| 4 |
| 9 |
(2)原式=4x2y-6xy+8xy-4+x2y+1
=5x2y+2xy-3,
当x=-
| 1 |
| 2 |
| 5 |
| 4 |
| 3 |
| 4 |
(3)∵2x2+xy+3y2=-5,
∴原式=9x2+2xy+6-xy-7x2+3y2+5=2x2+xy+3y2+11=-5+11=6;
(4)∵A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3,
∴A-(B+C)
=(x3-2x2+4x+3)-(x2+2x-6+x3+2x-3)
=x3-2x2+4x+3-x2-2x+6-x3-2x+3
=-3x2+12,
当x=-2时,原式=-12+12=0.
点评:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目