ÌâÄ¿ÄÚÈÝ
ʵÑéÓë̽¾¿
£¨1£©ÔÚͼ1¡¢Í¼2¡¢Í¼3ÖУ¬¸ø³öƽÐÐËıßÐÎABCDµÄ¶¥µãA¡¢B¡¢DµÄ×ø±ê£¬Ð´³öͼ1¡¢Í¼2¡¢Í¼3ÖеĶ¥µãCµÄ×ø±ê£¬ËüÃÇ·Ö±ðÊÇ
£¨2£©ÔÚͼ4ÖУ¬¸ø³öƽÐÐËıßÐÎABCDµÄ¶¥µãA£¬B£¬DµÄ×ø±ê£¨ÈçͼËùʾ£©£¬Çó³ö¶¥µãCµÄ×ø±ê£¨Cµã×ø±êÓú¬a£¬b£¬c£¬d£¬e£¬fµÄ´úÊýʽ±íʾ£©£»


¹éÄÉÓë·¢ÏÖ
£¨3£©Í¨¹ý¶Ôͼ1¡¢Í¼2¡¢Í¼3¡¢Í¼4µÄ¹Û²ìºÍ¶¥µãCµÄ×ø±êµÄ̽¾¿£¬Äã»á·¢ÏÖ£ºÎÞÂÛÆ½ÐÐËıßÐÎABCD´¦ÓÚÖ±½Ç×ø±êϵÖÐÄĸöλÖ㬵±Æä¶¥µãC×ø±êΪ£¨m£¬n£©£¨Èçͼ4£©Ê±£¬ÔòËĸö¶¥µãµÄºá×ø±êa£¬c£¬m£¬eÖ®¼äµÄµÈÁ¿¹ØÏµÎª
ÔËÓÃÓëÍÆ¹ã
£¨4£©ÔÚͬһֱ½Ç×ø±êϵÖÐÓÐË«ÇúÏßy=-
ºÍÈý¸öµãG(-
c£¬
c)£¬S(
c£¬
c)£¬H£¨2c£¬0£©£¨ÆäÖÐc£¾0£©£®Îʵ±cΪºÎֵʱ£¬¸ÃË«ÇúÏßÉÏ´æÔÚµãP£¬Ê¹µÃÒÔG£¬S£¬H£¬PΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿²¢Çó³öËùÓзûºÏÌõ¼þµÄPµã×ø±ê£®
£¨1£©ÔÚͼ1¡¢Í¼2¡¢Í¼3ÖУ¬¸ø³öƽÐÐËıßÐÎABCDµÄ¶¥µãA¡¢B¡¢DµÄ×ø±ê£¬Ð´³öͼ1¡¢Í¼2¡¢Í¼3ÖеĶ¥µãCµÄ×ø±ê£¬ËüÃÇ·Ö±ðÊÇ
£¨5£¬2£©¡¢£¨e+c£¬d£©
£¨5£¬2£©¡¢£¨e+c£¬d£©
£¬£¨e+c-a£¬d£©
£¨e+c-a£¬d£©
£®£¨2£©ÔÚͼ4ÖУ¬¸ø³öƽÐÐËıßÐÎABCDµÄ¶¥µãA£¬B£¬DµÄ×ø±ê£¨ÈçͼËùʾ£©£¬Çó³ö¶¥µãCµÄ×ø±ê£¨Cµã×ø±êÓú¬a£¬b£¬c£¬d£¬e£¬fµÄ´úÊýʽ±íʾ£©£»
¹éÄÉÓë·¢ÏÖ
£¨3£©Í¨¹ý¶Ôͼ1¡¢Í¼2¡¢Í¼3¡¢Í¼4µÄ¹Û²ìºÍ¶¥µãCµÄ×ø±êµÄ̽¾¿£¬Äã»á·¢ÏÖ£ºÎÞÂÛÆ½ÐÐËıßÐÎABCD´¦ÓÚÖ±½Ç×ø±êϵÖÐÄĸöλÖ㬵±Æä¶¥µãC×ø±êΪ£¨m£¬n£©£¨Èçͼ4£©Ê±£¬ÔòËĸö¶¥µãµÄºá×ø±êa£¬c£¬m£¬eÖ®¼äµÄµÈÁ¿¹ØÏµÎª
m=c+e-a
m=c+e-a
£»×Ý×ø±êb£¬d£¬n£¬fÖ®¼äµÄµÈÁ¿¹ØÏµÎªn=d+f-b
n=d+f-b
£¨²»±ØÖ¤Ã÷£©£»ÔËÓÃÓëÍÆ¹ã
£¨4£©ÔÚͬһֱ½Ç×ø±êϵÖÐÓÐË«ÇúÏßy=-
| 14 |
| x |
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 9 |
| 2 |
·ÖÎö£º£¨1£©¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£º¶Ô±ßƽÐÐÇÒÏàµÈ£¬µÃ³öͼ2£¬3Öж¥µãCµÄ×ø±ê·Ö±ðÊÇ£¨e+c£¬d£©£¬£¨c+e-a£¬d£©£»
£¨2£©·Ö±ð¹ýµãA£¬B£¬C£¬D×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA1£¬B1£¬C1£¬D1£¬·Ö±ð¹ýA£¬D×÷AE¡ÍBB1ÓÚE£¬DF¡ÍCC1ÓÚµãF£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬CD=BA£¬¸ù¾ÝÄڽǺͶ¨Àí£¬ÓÖ¡ßBB1¡ÎCC1£¬¿ÉÍÆ³ö¡ÏEBA=¡ÏFCD£¬¡÷BEA¡Õ¡÷CFD£®ÒÀÌâÒâµÃ³öAF=DF=a-c£¬BE=CF=d-b£®ÉèC£¨x£¬y£©£®ÓÉe-x=a-c£¬µÃx=e+c-a£®ÓÉy-f=d-b£¬µÃy=f+d-b£®¼Ì¶øÍƳöµãCµÄ×ø±ê£®
£¨3£©ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬CD=BA£¬Í¬ÀíÖ¤Ã÷¡÷BEA¡Õ¡÷CFD£¨Í¬£¨2£©Ö¤Ã÷£©£®È»ºóÍÆ³öAF=DF=a-c£¬BE=CF=d-b£®ÓÖÒÑÖªCµãµÄ×ø±êΪ£¨m£¬n£©£¬e-m=a-c£¬¹Êm=e+c-a£®ÓÉn-f=d-b£¬µÃ³ön=f+d-b£®
£¨4£©ÈôGSΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP1£¨-2c£¬7c£©£®ÒªÊ¹P1ÔÚË«ÇúÏßÉÏ£¬ÔòÓÐ-14c2=-14£¬Çó³öcµÄʵ¼ÊȡֵÒÔ¼°P1µÄ×ø±ê£¬ÈôSHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP2£¨3c£¬2c£©£¬Í¬Àí¿ÉµÃc=1£¬´ËʱP2£¨3£¬2£©£»ÈôGHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃ£¨c£¬-2c£©£¬Í¬Àí¿ÉµÃc=1£¬´ËʱP3£¨1£¬-2£©£»¹Ê×ÛÉÏËùÊö¿ÉµÃ½â£®
£¨2£©·Ö±ð¹ýµãA£¬B£¬C£¬D×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA1£¬B1£¬C1£¬D1£¬·Ö±ð¹ýA£¬D×÷AE¡ÍBB1ÓÚE£¬DF¡ÍCC1ÓÚµãF£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬CD=BA£¬¸ù¾ÝÄڽǺͶ¨Àí£¬ÓÖ¡ßBB1¡ÎCC1£¬¿ÉÍÆ³ö¡ÏEBA=¡ÏFCD£¬¡÷BEA¡Õ¡÷CFD£®ÒÀÌâÒâµÃ³öAF=DF=a-c£¬BE=CF=d-b£®ÉèC£¨x£¬y£©£®ÓÉe-x=a-c£¬µÃx=e+c-a£®ÓÉy-f=d-b£¬µÃy=f+d-b£®¼Ì¶øÍƳöµãCµÄ×ø±ê£®
£¨3£©ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬CD=BA£¬Í¬ÀíÖ¤Ã÷¡÷BEA¡Õ¡÷CFD£¨Í¬£¨2£©Ö¤Ã÷£©£®È»ºóÍÆ³öAF=DF=a-c£¬BE=CF=d-b£®ÓÖÒÑÖªCµãµÄ×ø±êΪ£¨m£¬n£©£¬e-m=a-c£¬¹Êm=e+c-a£®ÓÉn-f=d-b£¬µÃ³ön=f+d-b£®
£¨4£©ÈôGSΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP1£¨-2c£¬7c£©£®ÒªÊ¹P1ÔÚË«ÇúÏßÉÏ£¬ÔòÓÐ-14c2=-14£¬Çó³öcµÄʵ¼ÊȡֵÒÔ¼°P1µÄ×ø±ê£¬ÈôSHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP2£¨3c£¬2c£©£¬Í¬Àí¿ÉµÃc=1£¬´ËʱP2£¨3£¬2£©£»ÈôGHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃ£¨c£¬-2c£©£¬Í¬Àí¿ÉµÃc=1£¬´ËʱP3£¨1£¬-2£©£»¹Ê×ÛÉÏËùÊö¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©ÀûÓÃÆ½ÐÐËıßÐεÄÐÔÖÊ£º¶Ô±ßƽÐÐÇÒÏàµÈ£¬
µÃ³öͼ1¡¢Í¼2£¬3Öж¥µãCµÄ×ø±ê·Ö±ðÊÇ£º£¨5£¬2£©¡¢£¨e+c£¬d£©£¬£¨c+e-a£¬d£©£®
¹Ê´ð°¸Îª£º£¨5£¬2£©¡¢£¨e+c£¬d£©£¬£¨c+e-a£¬d£©£®
£¨2£©·Ö±ð¹ýµãA£¬B£¬C£¬D×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA1£¬B1£¬C1£¬D1£¬
·Ö±ð¹ýA£¬D×÷AE¡ÍBB1ÓÚE£¬DF¡ÍCC1ÓÚµãF£®
ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬CD=BA£¬
ÓÖ¡ßBB1¡ÎCC1£¬
¡à¡ÏEBA+¡ÏABC+¡ÏBCF=¡ÏABC+¡ÏBCF+¡ÏFCD=180¶È£®
¡à¡ÏEBA=¡ÏFCD£®
ÓÖ¡ß¡ÏBEA=¡ÏCFD=90¡ã£¬
¡à¡÷BEA¡Õ¡÷CFD£®
¡àAE=DF=a-c£¬BE=CF=d-b£®
ÉèC£¨x£¬y£©£®
ÓÉe-x=a-c£¬µÃx=e+c-a£®
ÓÉy-f=d-b£¬µÃy=f+d-b£®
¡àC£¨e+c-a£¬f+d-b£©£®
£¨´ËÎʽⷨ¶àÖÖ£¬¿É²ÎÕÕÆÀ·Ö£©
£¨3£©m=c+e-a£¬n=d+f-b»òm+a=c+e£¬n+b=d+f£®
£¨4£©ÈôGSΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP1£¨-2c£¬7c£©£®
ҪʹP1ÔÚË«ÇúÏßÉÏ£¬
ÔòÓÐ-14c2=-14£¬
¡àc1=-1£¨¸ù¾ÝÆäÖÐc£¾0£¬ÉáÈ¥£©£¬c2=1£®´ËʱP1£¨-2£¬7£©£®
ÈôSHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP2£¨3c£¬2c£©£¬
ͬÀí¿ÉµÃc=1£¬´ËʱP2£¨3£¬2£©²»ÔÚË«ÇúÏßÉÏ£®
ÈôGHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃ£¨c£¬-2c£©£¬
ͬÀí¿ÉµÃc=1£¬´ËʱP3£¨1£¬-2£©²»ÔÚË«ÇúÏßÉÏ£®
×ÛÉÏËùÊö£¬µ±c=1ʱ£¬Ë«ÇúÏßÉÏ´æÔÚµãP£¬Ê¹µÃÒÔG£¬S£¬H£¬PΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
·ûºÏÌõ¼þµÄµãÓÐP1£¨-2£¬7£©£®
µÃ³öͼ1¡¢Í¼2£¬3Öж¥µãCµÄ×ø±ê·Ö±ðÊÇ£º£¨5£¬2£©¡¢£¨e+c£¬d£©£¬£¨c+e-a£¬d£©£®
¹Ê´ð°¸Îª£º£¨5£¬2£©¡¢£¨e+c£¬d£©£¬£¨c+e-a£¬d£©£®
£¨2£©·Ö±ð¹ýµãA£¬B£¬C£¬D×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA1£¬B1£¬C1£¬D1£¬
·Ö±ð¹ýA£¬D×÷AE¡ÍBB1ÓÚE£¬DF¡ÍCC1ÓÚµãF£®
ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬CD=BA£¬
ÓÖ¡ßBB1¡ÎCC1£¬
¡à¡ÏEBA+¡ÏABC+¡ÏBCF=¡ÏABC+¡ÏBCF+¡ÏFCD=180¶È£®
¡à¡ÏEBA=¡ÏFCD£®
ÓÖ¡ß¡ÏBEA=¡ÏCFD=90¡ã£¬
¡à¡÷BEA¡Õ¡÷CFD£®
¡àAE=DF=a-c£¬BE=CF=d-b£®
ÉèC£¨x£¬y£©£®
ÓÉe-x=a-c£¬µÃx=e+c-a£®
ÓÉy-f=d-b£¬µÃy=f+d-b£®
¡àC£¨e+c-a£¬f+d-b£©£®
£¨´ËÎʽⷨ¶àÖÖ£¬¿É²ÎÕÕÆÀ·Ö£©
£¨3£©m=c+e-a£¬n=d+f-b»òm+a=c+e£¬n+b=d+f£®
£¨4£©ÈôGSΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP1£¨-2c£¬7c£©£®
ҪʹP1ÔÚË«ÇúÏßÉÏ£¬
ÔòÓÐ-14c2=-14£¬
¡àc1=-1£¨¸ù¾ÝÆäÖÐc£¾0£¬ÉáÈ¥£©£¬c2=1£®´ËʱP1£¨-2£¬7£©£®
ÈôSHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃP2£¨3c£¬2c£©£¬
ͬÀí¿ÉµÃc=1£¬´ËʱP2£¨3£¬2£©²»ÔÚË«ÇúÏßÉÏ£®
ÈôGHΪƽÐÐËıßÐεĶԽÇÏߣ¬ÓÉ£¨3£©¿ÉµÃ£¨c£¬-2c£©£¬
ͬÀí¿ÉµÃc=1£¬´ËʱP3£¨1£¬-2£©²»ÔÚË«ÇúÏßÉÏ£®
×ÛÉÏËùÊö£¬µ±c=1ʱ£¬Ë«ÇúÏßÉÏ´æÔÚµãP£¬Ê¹µÃÒÔG£¬S£¬H£¬PΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
·ûºÏÌõ¼þµÄµãÓÐP1£¨-2£¬7£©£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁËÆ½ÐÐËıßÐεÄÐÔÖÊ£¬Æ½ÃæÖ±½Ç×ø±êϵÄÚµÄ×ø±ê£¬Æ½ÐÐÏßµÄÐÔÖʵÈ֪ʶ£®Àí½âƽÐÐËıßÐεÄÌØµã½áºÏÆ½ÃæÖ±½Ç×ø±êϵÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿