题目内容
如图,为测量池塘边上两点A、B之间的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,那么A、B间的距离是( )
A.18米 B.24米 C.30米 D.28米
如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得m,m,延长AO,BO分别到D,C两点,使m,m,又测得m,则河塘宽AB= m.
通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一. 杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?
我们知道,无限循环小数都可以化成分数.例如:将化成分数时,可设,则有,,,解得,即化成分数是.仿此方法,将化成分数是____________.
下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )
【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.
小娟是这样解决的:
如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα= = .
易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .
【问题解决】
已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ = ,求sin2β的值.
如图,在已知的△ABC中,按以下步骤作图: ①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A.90° B. 95° C.100° D. 105°
如图,点P在正方形ABCD内,△PBC是正三角形,AC与PB相交于点E.有以下结论:
①∠ACP=15°;②△APE是等腰三角形;③AE2=PE·AB;④△APC的面积为S1,正方形ABCD的面积为S2,则S1:S2=1:4.其中正确的是 (把正确的序号填在横线上).